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Interrelationships between DMS and EMS functions (non-

exhaustive)
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How to Exchange Information between T&D?
1

= It is unrealistic to expect that the monitoring and control
of transmission operations will reach out to every device
and every function in the distribution and customer

domains.

= The T/D buses of the near-real time model of
transmission operations are the demarcation points
between transmission and distribution domains.
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Transmission Bus Load Model (TBLM) Concept
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Load Model is a Component of TBLM
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= This information should be generated by DMS and should be made available

to EMS
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Other Components of TBLM
-

= Aggregated capability curves
= Aggregated real and reactive load-to-voltage dependencies
= Aggregated real and reactive load-to-frequency dependencies
= Aggregated real and reactive load dependencies on
o Demand response control signals,
o Dynamic prices,
o Weather, etc.
= Aggregated dispatchable load
= Model forecast

= Overlaps of different load management functions, which use the same
load under different conditions.

= VPP technical and economic functions and attributes
= Degree of uncertainty.....

SPRING 2012 FACE-TO-FACE —
CHARLOTTE, NC .

—




Information Exchange between T&D Domains
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Activity Diagram of Use Case for TBLM support
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Scenarios for TBLM Use Cases
I

1. Develop aggregated DER capability curves for TBLM

. Develop aggregated model of dispatchable load for TBLM

5. Develop aggregated real and reactive load-to-voltage dependencies

.. Develop aggregated real and reactive load-to-frequency dependencies

s.  Develop aggregated real and reactive load dependencies on Demand
response control signals

6.  Develop aggregated real and reactive load dependencies on dynamic
prices,

7. Adapt aggregated real and reactive load dependencies to weather
conditions, etc.

s.  Develop aggregated real and reactive load dependencies on ambient
conditions.

o.  Develop models of overlaps of different load management functions,
which use the same load under different conditions.

10.  Assess the degree of uncertainty of TBLM component models
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Scenario categories 1 and 2
.

= Develop aggregated DER capability curves for TBLM
= Develop aggregated model of dispatchable load for TBLM
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Objectives
-0V

= Provide near-real-time aggregated capability curves of
DER in the TBLM for EMS applications

= Provide near-real-time aggregated real and reactive
dispatchable load in distribution in the TBLM for EMS

applications
o Based on DER only
o Based on DER and DR
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DER capability curves
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The actual voltages are different at different PCCs
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The voltage at PCC depends on the substation bus voltage,
distribution parameters and power flow,
and on the operations of DER

SGOC SPRING 2012 FACE-TO-FACE L
CHARLOTTE, NC .

—




Voltage profile along feeder with DER in

different modes.
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Near-real-time aggregated capability curves in

the TBLM
[
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Dispatchable aggregated reactive load in the TBLM
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Input data for development of aggregated capability

curves and dispatchable loads
-

= Actual kW and voltages at DER PCCs

o Sources of information:
m DSCADA
= DER Data Management System
= DOMA

= Voltages at DER PCCs under different bus voltages

o Sources of information:
» DOMA

= Modes and settings of DER Volt/var functions

o Sources of information:
m DSCADA
= DER Data Management System
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Aggregated real and reactive load-to-voltage and

to freauencx deﬂendencies

= The load-to-voltage dependencies should cover the
normal and the emergency voltage and frequency ranges

o Aggregated immediate real and reactive load-to-voltage
dependencies in the TBLM for the dynamic EMS
applications (up to seconds)

O Aggregated steady-state real and reactive load-to-voltage
dependencies (up to several hours)
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Reactive load-to-voltage dependency with embedded

16

PV DER in maximum inductive mode
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Reactive load-to-voltage dependency with embedded
PV DER in maximum capacitive mode
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Reactive load-to-voltage dependency with
embedded PV DER in constant Q mode
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Reactive load-to-voltage dependency with embedded
PV DER in constant Q mode with voltage override
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Impact of operating conditions on load-to-voltage

dependencies

Voltages are different along the feeder. Hence, different voltage ranges of the individual

dependencies are used. The reactive load dependencies are different for different
injections of real power by the DER.
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Aggregated at the bus load-to-voltage
dependencies.
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Individual nodal active load dependencies on
bus voltage with embedded DER
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Aggregated at the bus real load-to-voltage
dependencies, clear sky
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Aggregated at the bus real load-to-voltage
dependencies, cloudy sky
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Aggregated at the bus real load-to-frequency dependencies,

clear sky, before the time delay for >30 kW
-
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Aggregated at the bus real load-to-frequency
dependencies, clear sky, after the time delay for >30 kW
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Aggregatedload, pu

Aggregated at the bus real load-to-frequency
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Aggregated load dependency on frequency based on DER

frequency protection and on the operations of the UFLS
-
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Aggregated Models for Load Management
1

= The load management can be executed through
several programs, such as:
o Volt/var control in distribution
o Dynamic pricing
o Demand response/direct load control
o Interruptible load/Load curtailment

o Remedial Actions
m Under-frequency load shedding
m Under-voltage load shedding
= Predictive/special load shedding
m Block load shedding
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The Use of the Load Management Model by EMS

The least-intrusive load management means can be expected to be
used as variables under normal operating conditions

A more critical use of load management means is a part of the
steady-state and dynamic analyses of emergency situations.

With high penetration of DER in distribution and with the real
threat of compromising the cyber security, an exponential growth
of the variety of possible emergency situations can be expected.

This will require an N-m analyses and will also increase the
probability of cascading development of emergencies.

With the high diversity of combinations of contingencies different
sequences of load reducing/shedding actions are possible.

The overlapping of loads among different load management
schemes may impact the development of the contingencies.
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Effective load shedding capabilities of different load
anagement means in a sequence of execution
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Primary Information for the Models of Load
Management

= Data models of RAS (IEC 61850)

= Data models of DR, interruptible/curtainable
oads, RAS (IEC 61850, ANSI C12x)

= Triggering events:

o significant change in Demand Response participation
(contractual constraints, limited duration, etc.)

O re-allocation of interruptible /curtailable and block
load shedding sites;

o re-allocation or changes of settings of UFLS, UVLS,
Predictive LS, etc.
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Other scenarios included in the TBLM Use

Case.
I

= Develop aggregated models on Demand Response

o Provide available aggregated real and reactive Demand
Response values, durations, prices, etc., for near-real-time
and short-term look-ahead time intervals

= Develop aggregated real and reactive load
dependencies on weather conditions and time

o Include the combination of dependencies of natural load,
distributed generation and storage, demand response, and
the associated impacts of the distribution power flow and
DMS applications.

= Assess the degree of uncertainty of the TBLM (TBD)
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Thank you!

Questions, Comments?



